
REST Request Authentication

Contents of Technical Workshop

• Use of Digital Signatures

• Implementation of Digital Signature using ‘HTTP
Signatures’

• How to build HTTP Signature Header along with
sample code snippets

• Questions??

Overview

Client
1. Build message
2. Build Digital Signature by

generating a signing string
derived from artefacts within
the message and encrypt it
with client private key obtained
from Revenue

3. Send message (including
certificate and Digital
Signature)

Revenue
1. Verify sent certificate was

issued by Revenue
2. Generate signing string

derived from artefacts
within the message

3. Decrypt Digital Signature
using public key in sent
Certificate

4. Compare signing string
obtained from Digital
Signature decryption to
Revenue generated signing
string

5. If match, process message,
else not authenticated

• Any Revenue web service request that either returns confidential information or
accepts submission of information must be digitally signed. This must be done using a
digital certificate that has been previously retrieved from Revenue.

• The digital signature ensures the integrity of the document. By signing the document
we can ensure that no malicious intruder has altered the document in any way. It is
also be used for nonrepudiation purposes.

HTTP Signatures

• The HTTP signatures protocol is intended to provide a simple and standard way for
clients to sign HTTP requests.

• At a high level, a HTTP Signature is a HTTP header that is added to a HTTP request.
It is comprised of a set of components that were used to generate a digital
signature and the digital signature itself.

• Below is a sample HTTP Signature Header

Signature: keyId="MIICfzCCAeigAwIBAgIJ... // truncated",

algorithm="rsa-sha512",

headers="(request-target) host date digest",

signature="GdUqDgy94Z8mSYUjr/rL6qrLX/jmudS... // truncated"

• keyId – Revenue issued Certificate

• algorithm - Digital signature algorithm to use when generating the signature

• headers – List of headers used when generating the signature

• signature - Digital signature generated from the algorithm and headers field(forms
a canonicalized 'String to be signed') above

HTTP Signature header Preparation

• Before we can build the HTTP Signature header, we must add all HTTP headers/
components that will be used to generate the digital signature to the HTTP
request. These components will be specified in the 'headers’ portion of the HTTP
Signature header later.

• Allowable values in the headers field are outlined in the table below

Value Mandatory

(request-target) Yes

host Yes

date Yes

x-date Yes, if date header cannot be added.

digest Yes, if HTTP method is of type POST

content-type No

content-length No

x-http-method-override If HTTP method is of type POST, HTTP header ‘X-HTTP-Method-

Override’ exists and ‘Content-Type=application/x-www-form-

urlencoded

HTTP Signature header Preparation 2

• It should be noted that the (request-target) Allowable value defined in the table above
is built from 2 HTTP headers. It is generated by concatenating the lowercase HTTP
method, an ASCII space, and the request path headers. See below for sample

(request-target): get /v1/rest/rpn/{ employerRegistrationNumber }/{taxYear}

• Unfortunately, the initial implementation of the (request-target) HTTP header differs
slightly from that specified in the IETF HTTP Signatures draft as outlined below.

Example of expected (request-target) as currently implemented by revenue

(request-target): get /v1/rest/payroll/1234567CH/2019/1/1

Example of expected (request-target) as outlined by IETF HTTP Signatures draft

(request-target): get /paye-employers/v1/rest/payroll/1234567CH/
2019/1/1?softwareused=xyz&softwareVersion=1.0

• We are working towards aligning our implementation with that specified in the IETF HTTP
Signatures draft and hope to release the change to PIT as soon as possible.

Building a HTTP Signature header

• Once the required HTTP headers have been added to the HTTP request, we can
begin to build the HTTP Signature header which is simply a concatenation of the
following pieces of information

• keyId - Get X509 certificate that accompanies the private key as a byte array and
Base64 encode. This field is required.

– Encode the Password used to open the keystore

– Open the keystore

– Get the Certificate from the keystore

– Get Base64 Encoded Certificate As String

• algorithm: The ‘algorithm’ parameter is used to specify the digital signature
algorithm to use when generating the signature. Revenue expects this to be ‘rsa-
sha512’. This field is required.

• headers: The 'headers' parameter specifies the list of headers used when
generating the signature for the message. The parameter must be a lowercased,
quoted list of HTTP header fields, separated by a single space character. The list
order is important, and MUST be specified in the order the HTTP header field-value
pairs are concatenated together during signing.

https://gist.github.com/RevenueGitHubAdmin/d8a0275dea117848581b0e50ab57327a
https://gist.github.com/RevenueGitHubAdmin/476bb3b710f328f658a229b1de53687e
https://gist.github.com/RevenueGitHubAdmin/2e149d08dc79f496ee552c605eb08fe2
https://gist.github.com/RevenueGitHubAdmin/90d3af2f4fbe13fec85a763066e7bab0

Building a HTTP Signature header 2

• signature: The signature component is a base 64 encoded digital signature string. The
implementer uses the 'algorithm' and 'headers' field to form a canonicalized 'String
to be signed’.
– The 'String to be signed' is signed with the private key that accompanies the X509

certificate with the 'keyId' field and the algorithm corresponding to the 'algorithm' field.
The 'signature' field is then base 64 encoded, converted to a String and concatenated
with the rest of the fields. The following outlines the steps to be taken to generate the
string to be signed

1. Generate the String to be signed – In order to generate the string to be signed, the implementer
MUST use the values of each HTTP header defined in the 'headers' signature field, to build the
signature string. Values must be in the order they appear in the 'headers' signature field. If the
associated HTTP header does not exist, it should be added to the HTTP request BEFORE
attempting to construct this string.
• The (request-target) header is built from 2 HTTP headers. It is generated by concatenating

the lowercase HTTP method, an ASCII space, and the request path headers.
• All other header field values are created by concatenating the lowercase header field name

followed by an ASCII colon ':', an ASCII space ' ', and the header field value. Leading and
trailing whitespace in the header field value MUST be omitted. If the header field is not the
last value defined in the 'headers' signature field, then append an ASCII newline '\n'. See
example below

(request-target): get /v1/rest/rpn/3390938BH/2018\n
host: www.ros.ie\n
date: Wed Jun 13 2018 11:37:48 GMT+0100 (GMT Daylight Time

https://gist.github.com/RevenueGitHubAdmin/fae44b60d206873f286907d9fc134bf5

Building a HTTP Signature header 3

2. Encode the Password used to open the keystore

3. Open the keystore

4. Get private key From KeyStore

5. Sign string

• Once all 4 parts have been created and concatenated, we will end up with a
string similar to below

Signature: keyId="MIICfzCCAeigAwIBAgIJ... // truncated",

algorithm="rsa-sha512",

headers="(request-target) host date digest",

signature="GdUqDgy94Z8mSYUjr/rL6qrLX/jmudS... // truncated“

https://gist.github.com/RevenueGitHubAdmin/d8a0275dea117848581b0e50ab57327a
https://gist.github.com/RevenueGitHubAdmin/476bb3b710f328f658a229b1de53687e
https://gist.github.com/RevenueGitHubAdmin/2e149d08dc79f496ee552c605eb08fe2
https://gist.github.com/RevenueGitHubAdmin/2b2a27d9feab73ff98f75416888b7c0a

Questions

• ???

